题目内容

已知大于1的正数x,y,z满足
(1)求证:
(2)求的最小值.
【答案】分析:(1)可以将不等式左边乘以)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]然后利用柯西不等式进行放缩求解;
(2)根据对数函数的性质,然后再利用柯西不等式进行放缩,注意不等式取等号的条件进行证明;
解答:解:(1)由柯西不等式得,
)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27
得:
(2)∵=++
由柯西不等式得:(++)(log3(xy)+log3(yz)+log3(zx)),
由柯西不等式得:(++)(log3(xy)+log3(yz)+log3(zx))≥9
所以,


.得
所以,当且仅当时,等号成立.
故所求的最小值是3.
点评:此题主要考查柯西不等式的应用,充分利用好条件,进行拆分,是解题的关键,此题是一道中档题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网