题目内容
已知大于1的正数x,y,z满足x+y+z=3
.
(1)求证:
+
+
≥
.
(2)求
+
+
的最小值.
| 3 |
(1)求证:
| x2 |
| x+2y+3z |
| y2 |
| y+2z+3x |
| z2 |
| z+2x+3y |
| ||
| 2 |
(2)求
| 1 |
| log3x+log3y |
| 1 |
| log3y+log3z |
| 1 |
| log3z+log3x |
(1)由柯西不等式得,
(
+
+
)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27
得:
+
+
≥
;
(2)∵
+
+
=
+
+
,
由柯西不等式得:(
+
+
)(log3(xy)+log3(yz)+log3(zx)),
由柯西不等式得:(
+
+
)(log3(xy)+log3(yz)+log3(zx))≥9
所以,(
+
+
)≥
=
,
又∵3
=x+y+z≥3
.
∴xyz≤3
.
∴log3xyz≤
.得
≥
×
=3
所以,
+
+
≥3当且仅当x=y=z=
时,等号成立.
故所求的最小值是3.
(
| x2 |
| x+2y+3z |
| y2 |
| y+2z+3z |
| z2 |
| z+2x+3y |
得:
| x2 |
| x+2y+3z |
| y2 |
| y+2z+3x |
| z2 |
| z+2x+3y |
| ||
| 2 |
(2)∵
| 1 |
| log3x+log3y |
| 1 |
| log3y+log3z |
| 1 |
| log3z+log3x |
| 1 |
| log3(xy) |
| 1 |
| log3(yz) |
| 1 |
| log3(zx) |
由柯西不等式得:(
| 1 |
| log3(xy) |
| 1 |
| log3(yz) |
| 1 |
| log3(zx) |
由柯西不等式得:(
| 1 |
| log3(xy) |
| 1 |
| log3(yz) |
| 1 |
| log3(zx) |
所以,(
| 1 |
| log3(xy) |
| 1 |
| log3(yz) |
| 1 |
| log3(zx) |
| 9 |
| (log3(xy)+log3(yz)+log3(zx)) |
| 9 |
| 2log3(xyz) |
又∵3
| 3 |
| 3 | xyz |
∴xyz≤3
| 3 |
∴log3xyz≤
| 3 |
| 2 |
| 9 |
| 2log3xyz |
| 9 |
| 2 |
| 2 |
| 3 |
所以,
| 1 |
| log3x+log3y |
| 1 |
| log3y+log3z |
| 1 |
| log3z+log3x |
| 3 |
故所求的最小值是3.
练习册系列答案
相关题目