题目内容
设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线
.
(I)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.
(II)求函数y=f(x)的单调增区间;
(III)画出函数y=f(x)在区间[0,π]上的图象.![]()
(1)
右移
个单位 (2)
(3)略
解析试题分析:(1)因为函数f(x)=sin(2x+φ)在对称轴时有最大或最小值,据此就可得到含∅的等式,求出∅值.因为x=
是函数y=f(x)的图象的对称轴,所以sin(2×
+ϕ)=±1,即
+ϕ=kπ+
,k∈Z.因为-π<φ<0,所以ϕ=-
.
(2)借助基本正弦函数的单调性来解,因为y=sinx在区间[2kπ-
,2kπ+
],k∈Z上为增函数,所以只需2x-
∈[2kπ-
,2kπ+
],k∈Z,在解出x的范围
即可.
(3)利用五点法作图,令x分别取0,
,
,π,求出相应的y值,就可得到函数在区间[0,π]上的点的坐标,再把坐标表示到直角坐标系,用平滑的曲线连接即可得到所求图象。![]()
考点:三角函数的性质
点评:本小题主要考查根据三角函数的性质求解析式,以及单调区间,三角函数图象的画法,考查学生的推理和运算能力
练习册系列答案
相关题目