题目内容
有两点M(-1,0),N(1,0),点P(x,y)使
•
,
•
,
•
成公差小于零的等差数列;
1)求x,y满足的关系式;2)若P横坐标x0=
,记 θ为
与
夹角,求tanθ值.
| MP |
| MN |
| PM |
| PN |
| NM |
| NP |
1)求x,y满足的关系式;2)若P横坐标x0=
| 2 |
| PM |
| PN |
分析:(1)利用向量的坐标运算、数量积运算,将已知化为2x+2+(-2x+2)=2(x2-1+y2),且2x+2>-2x+2 并整理即可.
(2)利用向量夹角计算公式,先得出cosθ,再求tanθ.
(2)利用向量夹角计算公式,先得出cosθ,再求tanθ.
解答:解:(1)由已知,得到:
=(x+1,y)
=(2,0)
=(x-1,y)
=-
=(-x-1,-y),
=-
=(-x+1,-y),
∴
•
=2x+2,
•
=x2-1+y2,
•
=-2x+2,
∵
•
,
•
,
•
成公差小于零的等差数列,
∴2x+2+(-2x+2)=2(x2-1+y2),且2x+2>-2x+2 整理得出x2+y2=3(x>0).
(2)
=-
=(-x-1,-y),
=-
=(-x+1,-y),
•
=x2+y2-1=2,
•|
=
=
=
若P横坐标x0=
,则
•|
=
=2
,cos<
,
>=
=
,
θ=45°tanθ=1.
| MP |
| MN |
| NP |
| PM |
| MP |
| PN |
| NP |
∴
| MP |
| MN |
| PM |
| PN |
| NM |
| NP |
∵
| MP |
| MN |
| PM |
| PN |
| NM |
| NP |
∴2x+2+(-2x+2)=2(x2-1+y2),且2x+2>-2x+2 整理得出x2+y2=3(x>0).
(2)
| PM |
| MP |
| PN |
| NP |
| PM |
| PN |
| |PM| |
| PN| |
| (-x+1)2+(-y)2 |
| (-x-1)2+(-y)2 |
| x2+y2+2x+1 |
| x2+y2-2x+1 |
| 4+2x |
| 4-2x |
| 16-4x2 |
若P横坐标x0=
| 2 |
| |PM| |
| PN| |
| 16-8 |
| 2 |
| PM |
| PN |
| ||||
|
|
| ||
| 2 |
θ=45°tanθ=1.
点评:本题考查了向量的坐标运算、数量积运算 向量夹角计算,考查转化、计算能力.
练习册系列答案
相关题目