题目内容

如图所示的空间直角坐标系A-xyz中,正三角形△ABC中AB=2,AA1∥BB1∥CC1,AA1=BB1=CC1=2,D,E分别为A1C,BB1的中点.
(Ⅰ)求证:DE∥平面ABC;        
(Ⅱ)求异面直线BD与CE所成角的大小.
分析:在空间直角坐标系中,先确定相关点的坐标,(1)取取AC的中点F,利用向量证明DE∥BF,从而由线面平行的判定定理得证(2)分别求出两条异面直线的方向向量的坐标,再利用向量数量积运算的夹角公式计算向量夹角的余弦值,最后由异面直线所成的角的范围得角的大小
解答:解:依题意,A(0,0,0),B(
3
,1,0),C(0,2,0),D(0,1,1),E(
3
,1,1)
(1)取AC的中点F(0,1,0),则
BF
=(-
3
,0,0),
ED
=(-
3
,0,0)
BF
=
ED

∴DE∥BF
又BF?平面ABC,DE?平面ABC
∴DE∥平面ABC
(2)∵
BD
=(-
3
,0,1),
CE
=(
3
,-1,1)
∴cos<
BD
CE
>=
BD
CE
|
BD
|| 
CE
|
=
-3+0+1
3+1
×
3+1+1
=-
5
5

∴异面直线BD与CE所成角的余弦值为
5
5

∴异面直线BD与CE所成角的大小为arccos
5
5
点评:本题综合考查了空间直角坐标系的方法解决立体几何问题,线面平行的判定定理,求异面直线所成的角的方法
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网