题目内容
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.

(1)求证: EC⊥CD;
(2)求证:AG∥平面BDE;
(3)求:几何体EG-ABCD的体积.
(1)求证: EC⊥CD;
(2)求证:AG∥平面BDE;
(3)求:几何体EG-ABCD的体积.
(1)证明过程详见解析;(2)证明过程详见解析;(3)
试题分析:(1)要证
(2)过G作GN⊥CE交BE于M,连 DM,由题设可证四边形
从而由直线与平面平行的判定定理,可证AG∥平面BDE;
(3)欲求几何体EG-ABCD的体积,可先将该几何体分成一个四棱锥
试题解析:
(1)证明:由平面ABCD⊥平面BCEG,
平面ABCD∩平面BCEG=BC,
又CD
(2)证明:在平面BCDG中,过G作GN⊥CE交BE于M,连DM,则由已知知;MG=MN,MN∥BC∥DA,且
∵DM
(3)解:
练习册系列答案
相关题目