题目内容

已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-
12
)
2
=r2
(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.
分析:(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M(1,
1
2
),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;
(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y-(t+1)2=2(t+1)(x-t),即y=2(t+1)x-t2+1,若该直线与圆M相切,则圆心M到该切线的距离为
5
2
,建立方程,求得t的值,求出相应的切线方程,可得D的坐标,从而可求D到l的距离.
解答:解:(Ⅰ)设A(x0,(x0+1)2),
∵y=(x+1)2,y′=2(x+1)
∴l的斜率为k=2(x0+1)
当x0=1时,不合题意,所以x0≠1
圆心M(1,
1
2
),MA的斜率k′=
(x0+1)2-
1
2
x0-1

∵l⊥MA,∴2(x0+1)×
(x0+1)2-
1
2
x0-1
=-1
∴x0=0,∴A(0,1),
∴r=|MA|=
5
2

(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y-(t+1)2=2(t+1)(x-t),即y=2(t+1)x-t2+1
若该直线与圆M相切,则圆心M到该切线的距离为
5
2

|2(t+1)×1-
1
2
-t2+1|
[2(t+1)]2+1
=
5
2

∴t2(t2-4t-6)=0
∴t0=0,或t1=2+
10
,t2=2-
10

抛物线C在点(ti,(ti+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为
y=2x+1①,y=2(t1+1)x-t12+1②,y=2(t2+1)x-t22+1
②-③:x=
t1+t2
2
=2

代入②可得:y=-1
∴D(2,-1),
∴D到l的距离为
|4+1+1|
5
=
6
5
5
点评:本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网