题目内容
函数
的最小值是
.
【解析】![]()
,则函数的最小值为
。
练习册系列答案
相关题目
已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=( )
|
| A. | {5,7} | B. | {2,4} | C. | {2,4,8} | D. | {1,3,5,6,7} |
“
”是“数列{an}为等比数列”的( )
|
| A. | 充分不必要条件 | B. | 必要不充分条件 |
|
| C. | 充要条件 | D. | 既不充分也不必要条件 |
低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数
,家用天然气的二氧化碳排放量(千克)=天然气使用立方数
等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符合低碳排放标准”的调查.生活习惯符合低碳观念的称为“低碳家庭”,否则称为“非低碳家庭”.经统计,这两类家庭占各自小区总户数的比例
数据如下:
| 东城小区 | 低碳家庭 | 非低碳家庭 | 西城小区 | 低碳家庭 | 非低碳家庭 | |
| 比例 |
|
| 比例 |
|
|
(1)如果在东城、西城两个小区内各随机选择2个家庭,求这
个家庭中恰好有两个家庭是“低碳家庭”的概率;
(2)该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”中有
的家庭能加入到“低碳家庭”的行列中.宣传两周后随机地从东城小区中任选
个家庭,记
表示
个家庭中“低碳家庭”的个数,求
和
.