题目内容
定义:,已知数列满足:,若对任意正整数,都有成立,则的值为( )
A. B. C. D.
C
变量、满足线性约束条件,则目标函数的最大值为 .
已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.
已知分别是的三个内角的对边,。
(1)求角的大小;
(2)求函数的值域。
已知复数,则 ( )
A. B.z的实部为1 C.z的虚部为﹣1 D.z的共轭复数为1+i
已知,则的值是 ;
设是公差大于零的等差数列,已知,.
(Ⅰ)求的通项公式;
(Ⅱ)设是以1为首项,以为公比的等比数列,求数列的前项和.
若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3= _________ .
设为双曲线虚轴的一个端点,为双曲线上的一个动点,则的最小值为 .