题目内容
(2012•浦东新区二模)记数列{an}的前n项和为Sn.已知向量
=(cos
+sin
,1)(n∈N*)和
=(an,cos
-sin
)(n∈N*)满足
∥
.
(1)求数列{an}的通项公式;
(2)求S3n;
(3)设bn=2nan,求数列{bn}的前n项的和为Tn.
| a |
| nπ |
| 3 |
| nπ |
| 3 |
| b |
| nπ |
| 3 |
| nπ |
| 3 |
| a |
| b |
(1)求数列{an}的通项公式;
(2)求S3n;
(3)设bn=2nan,求数列{bn}的前n项的和为Tn.
分析:(1)利用向量共线轭充要条件,即可求得数列{an}的通项公式;
(2)S3n=a1+a2+…+a3n=(a1+a2+a3)+(a4+a5+a6)+…+(a3n-2+a3n-1+a3n),且数列{an}:-
,-
,1,-
,-
,1,…为周期为3的周期数列,由此即可求得S3n;
(3)bn=2nan=2ncos
,再分类讨论,n=3k、3k-1、3k-2(k∈N*),即可求出数列{bn}的前n项的和为Tn.
(2)S3n=a1+a2+…+a3n=(a1+a2+a3)+(a4+a5+a6)+…+(a3n-2+a3n-1+a3n),且数列{an}:-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)bn=2nan=2ncos
| 2nπ |
| 3 |
解答:解:(1)∵
∥
,
=(cos
+sin
,1)(n∈N*)和
=(an,cos
-sin
)
∴an=(cos
+sin
)(cos
-sin
)=cos2
-sin2
=cos
∴an=cos
;
(2)数列{an}:-
,-
,1,-
,-
,1,…为周期为3的周期数列且a3k-2+a3k-1+a3k=0(k∈N*).
∴S3n=a1+a2+…+a3n=(a1+a2+a3)+(a4+a5+a6)+…+(a3n-2+a3n-1+a3n)=n(-
-
+1)=0.
(3)bn=2nan=2ncos
.
当n=3k(k∈N*)时,
∵b3k-2+b3k-1+b3k=23k-2(-
)+23k-1(-
)+23k•1=5•23k-3.
∴Tn=T3k=5(1+23+…+23k-3)=
(23k-1)=
(2n-1).
当n=3k-1(k∈N*)时,Tn=T3k-1=T3k-b3k=
(23k-1)-23k•1=-
=-
.
当n=3k-2(k∈N*)时,Tn=T3k-2=T3k-1-b3k-1=-
-23k-1•(-
)=-
=-
.
故Tn=
.
| a |
| b |
| a |
| nπ |
| 3 |
| nπ |
| 3 |
| b |
| nπ |
| 3 |
| nπ |
| 3 |
∴an=(cos
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| nπ |
| 3 |
| 2nπ |
| 3 |
∴an=cos
| 2nπ |
| 3 |
(2)数列{an}:-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴S3n=a1+a2+…+a3n=(a1+a2+a3)+(a4+a5+a6)+…+(a3n-2+a3n-1+a3n)=n(-
| 1 |
| 2 |
| 1 |
| 2 |
(3)bn=2nan=2ncos
| 2nπ |
| 3 |
当n=3k(k∈N*)时,
∵b3k-2+b3k-1+b3k=23k-2(-
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=T3k=5(1+23+…+23k-3)=
| 5 |
| 7 |
| 5 |
| 7 |
当n=3k-1(k∈N*)时,Tn=T3k-1=T3k-b3k=
| 5 |
| 7 |
| 23k+1+5 |
| 7 |
| 2n+2+5 |
| 7 |
当n=3k-2(k∈N*)时,Tn=T3k-2=T3k-1-b3k-1=-
| 23k+1+5 |
| 7 |
| 1 |
| 2 |
| 23k-2+5 |
| 7 |
| 2n+5 |
| 7 |
故Tn=
|
点评:本题考查数列的通项与求和,考查分类讨论的数学思想,认真审题,挖掘隐含是解题的关键.
练习册系列答案
相关题目