题目内容

4.已知数列{an}的前n项和为Sn,满足Sn=-n2+7n(n∈N*).
(Ⅰ)求数列{an}的通项公式;  
(Ⅱ)求Sn的最大值.

分析 (I)利用递推关系即可得出.
(II)配方利用二次函数的单调性即可得出.

解答 解:(Ⅰ)∵${S_n}=-{n^2}+7n$,
当n≥2时,${a_n}={S_n}-{S_{n-1}}=-{n^2}+7n-[-{(n-1)^2}+7(n-1)]=-2n+8$,
当n=1时,a1=S1=6适合上式.
∴an=-2n+8.
(Ⅱ)由(Ⅰ)${S_n}=-{n^2}+7n=-{(n-\frac{7}{2})^2}+\frac{49}{4}$,
∴n=3,4时,Sn的最大值为12.

点评 本题考查了数列递推关系、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网