题目内容
【题目】利用节中100户居民用户的月均用水量的调查数据,计算样本数据的平均数和中位数,并据此估计全市居民用户月均用水量的平均数和中位数.
9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0
2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2. 0 10.5
2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9
2.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.6 22.4
3.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0
22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9
5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7
5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.3
5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8
7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6
【答案】8.79 t,6.6 t
【解析】
根据节中给的数据求解即可.
根据节中100户居民用户月均用水量的数据,由样本平均数的定义,可得
,即100户居民的月均用水量的平均数为8.79t.
将样本数据按从小到大排序,得第50个数和第51个数分别为6.4,6.8,由中位数的定义,可得
,
即100户居民的月均用水量的中位数是6.6t.
因为数据是抽自全市居民户的简单随机样本,所以我们可以据此估计全市居民用户的月均用水量约为8.79t,其中位数约为6.6t.
【题目】某公司对员工实行新的临时事假制度:“每位员工每月在正常的工作时间临时有事,可请假至多三次,每次至多一小时”,现对该制度实施以来
名员工请假的次数进行调查统计,结果如下表所示:
请假次数 |
|
|
|
|
人数 |
|
|
|
|
根据上表信息解答以下问题:
(1)从该公司任选两名员工,求这两人请假次数之和恰为
的概率;
(2)从该公司任选两名员工,用
表示这两人请假次数之差的绝对值,求随机变量
的分布列及数学期望
.
【题目】已知一组数据:
125 121 123 125 127 129 125 128 130
129 126 124 125 127 126 122 124 125
126 128
(1)填写下面的频率分布表:
分组 | 频数累计 | 频数 | 频率 |
| |||
| |||
| |||
| |||
| |||
合计 |
(2)作出频率分布直方图.
(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数.