ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖª·ÇÁãÏòÁ¿$\overrightarrow a$=£¨cos¦Á£¬cos¦Á£©£¬ÏòÁ¿$\overrightarrow b$=£¨sin¦Á£¬cos¦È-2sin¦Á£©£¬ÏòÁ¿$\overrightarrow c$=£¨1£¬2£©£®£¨I£©Èô$\overrightarrow a$¡Î$\overrightarrow b$£¬Çótan¦ÁµÄÖµ£»
£¨II£©Èô|${\overrightarrow b}$|=|${\overrightarrow c}$|£¬0£¼¦Á£¼¦Ð£¬Çó¦ÁµÄÖµ£®
·ÖÎö £¨I£©ÀûÓÃÆ½ÃæÏòÁ¿¹²ÏßµÄÐÔÖÊ£¬»¯¼ò¿ÉµÃ3sin¦Ácos¦Á-cos2¦Á=0£¬ÓÉcos¦Á¡Ù0£¬»¯¼ò¿ÉÇó$tan¦Á=\frac{1}{3}$£®
£¨II£©ÓÉ$|{\overrightarrow b}|=|{\overrightarrow c}|$¿ÉÖªsin2¦Á+£¨cos¦Á-2sin¦Á£©2=5£¬ÀûÓÃÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óû¯¼ò¿ÉÇó$sin£¨2¦Á+\frac{¦Ð}{4}£©=-\frac{{\sqrt{2}}}{2}$£¬ÓÖ0£¼¦Á£¼¦Ð£¬Öª$\frac{¦Ð}{4}£¼2¦Á+\frac{¦Ð}{4}£¼\frac{9¦Ð}{4}$£¬ÀûÓÃÕýÏÒº¯ÊýµÄͼÏóºÍÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµ¼´¿É½âµÃ¦ÁµÄÖµ£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨I£©¡ß$\overrightarrow a¡Î\overrightarrow b$£¬
¡àsin¦Ácos¦Á-cos¦Á£¨cos¦Á-2sin¦Á£©=0£¬
¡à3sin¦Ácos¦Á-cos2¦Á=0£¬¡£¨3·Ö£©
¡ßcos¦Á¡Ù0£¬
¡à3sin¦Á-cos¦Á=0£¬
ËùÒÔ$tan¦Á=\frac{1}{3}$£®¡£¨5·Ö£©
£¨II£©ÓÉ$|{\overrightarrow b}|=|{\overrightarrow c}|$¿ÉÖª£¬¡àsin2¦Á+£¨cos¦Á-2sin¦Á£©2=5£¬¡£¨6·Ö£©
¡à1-2sin2¦Á+4sin2¦Á=5£¬
¡à-2sin2¦Á+4sin2¦Á=4£®
¡àsin2¦Á+cos2¦Á=-1£®
¡à$sin£¨2¦Á+\frac{¦Ð}{4}£©=-\frac{{\sqrt{2}}}{2}$£®¡£¨9·Ö£©
ÓÖ0£¼¦Á£¼¦Ð£¬Öª$\frac{¦Ð}{4}£¼2¦Á+\frac{¦Ð}{4}£¼\frac{9¦Ð}{4}$£¬
¡à$2¦Á+\frac{¦Ð}{4}=\frac{5¦Ð}{4}$»ò$2¦Á+\frac{¦Ð}{4}=\frac{7¦Ð}{4}$£®¡£¨11·Ö£©
Òò´Ë$¦Á=\frac{¦Ð}{2}$»ò$¦Á=\frac{3¦Ð}{4}$£®¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿¹²ÏßµÄÐÔÖÊ£¬Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬ÕýÏÒº¯ÊýµÄͼÏóºÍÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµµÄÓ¦Ó㬿¼²éÁËת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | ab | B£® | bc | C£® | ca | D£® | abc |
| A£® | [-2£¬0] | B£® | [-1£¬0] | C£® | [-1£¬-2] | D£® | [0£¬2] |
| A£® | 8 | B£® | 9 | C£® | 10 | D£® | 11 |
| A£® | {0£¬4} | B£® | {3£¬4} | C£® | {1£¬2} | D£® | ∅ |