题目内容
设函数f(x)=logax(a>0,且a≠1),若f(x1x2…x2007)=8,则f(x12)+f(x22)+…+f(x20072)=________.
16
分析:由题设条件知f(x12)+f(x22)+…+f(x20072)=logax12+logax22+…+logax20072=loga(x1x2…x2007)2,由已知能够求出f(x1x2…x2007)=8,则f(x12)+f(x22)+…+f(x20092)的值可求.
解答:f(x12)+f(x22)+…+f(x20072)=logax12+logax22+…+logax20072
=loga(x1x2…x2007)2
=2loga(x1x2…x2007)
=2f(x1x2…x2007)
=2×8=16
故答案为:16.
点评:本题考查对数的运算律,函数值求解.本题要注意整体代换进行转化.
分析:由题设条件知f(x12)+f(x22)+…+f(x20072)=logax12+logax22+…+logax20072=loga(x1x2…x2007)2,由已知能够求出f(x1x2…x2007)=8,则f(x12)+f(x22)+…+f(x20092)的值可求.
解答:f(x12)+f(x22)+…+f(x20072)=logax12+logax22+…+logax20072
=loga(x1x2…x2007)2
=2loga(x1x2…x2007)
=2f(x1x2…x2007)
=2×8=16
故答案为:16.
点评:本题考查对数的运算律,函数值求解.本题要注意整体代换进行转化.
练习册系列答案
相关题目