题目内容
已知函数
.
(1)求证:f(x)+f(2a-x)+2=0对定义域内的所有x都成立;
(2)当f(x)的定义域为
时,求证:f(x)的值域为[-3,-2].
证明:(1)∵f(x)=
=
-1,
∴f(2a-x)=
-1=-
-1,
∴f(x)+f(2a-x)+2=
+(-
)-2+2=0,与x取值无关.
∴f(x)+f(2a-x)+2=0对定义域内的所有x都成立;
(2)∵f(x)的定义域为
,
∴-1-a≤-x≤-a-
,-1≤a-x≤-
,-2≤
≤-1,
又f(x)=
-1,
∴-3≤
-1≤-2,即f(x)的值域为[-3,-2].
分析:(1)由于f(x)=
-1,于是可得f(x)+f(2a-x)+2=0,与x取值无关得证;
(2)由定义域为[a+12,a+1],得
,再由f(x)=
-1即可求解.
点评:本题考查函数的值域,关键在于对f(x)的化简(化为f(x)=
-1),难点在于由x的范围到-x的范围,再到a-x的范围,最后到
的范围的探讨,属于难题.
∴f(2a-x)=
∴f(x)+f(2a-x)+2=
∴f(x)+f(2a-x)+2=0对定义域内的所有x都成立;
(2)∵f(x)的定义域为
∴-1-a≤-x≤-a-
又f(x)=
∴-3≤
分析:(1)由于f(x)=
(2)由定义域为[a+12,a+1],得
点评:本题考查函数的值域,关键在于对f(x)的化简(化为f(x)=
练习册系列答案
相关题目