ÌâÄ¿ÄÚÈÝ
19£®ÎÒ¹úÄÏËÎÖøÃûÊýѧ¼ÒÇØ¾ÅÉØ·¢ÏÖÁË´ÓÈý½ÇÐÎÈý±ßÇóÈý½ÇÐÎÃæ»ýµÄ¡°Èýб¹«Ê½¡±£¬Éè¡÷ABCÈý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬Ãæ»ýΪS£¬Ôò¡°ÈýбÇó»ý¡±¹«Ê½Îª$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{£¨{\frac{{{a^2}+{c^2}-{b^2}}}{2}}£©}^2}}]}$£®Èôa2sinC=4sinA£¬£¨a+c£©2=12+b2£¬ÔòÓá°ÈýбÇó»ý¡±¹«Ê½ÇóµÃ¡÷ABCµÄÃæ»ýΪ£¨¡¡¡¡£©| A£® | $\sqrt{3}$ | B£® | 2 | C£® | 3 | D£® | $\sqrt{6}$ |
·ÖÎö ¸ù¾ÝÕýÏÒ¶¨Àí£ºÓÉa2sinC=4sinAµÃac=4£¬ÔòÓÉ£¨a+c£©2=12+b2µÃa2+c2-b2=4£¬ÀûÓù«Ê½¿ÉµÃ½áÂÛ£®
½â´ð ½â£º¸ù¾ÝÕýÏÒ¶¨Àí£ºÓÉa2sinC=4sinAµÃac=4£¬ÔòÓÉ£¨a+c£©2=12+b2µÃa2+c2-b2=4£¬Ôò${S_{¡÷ABC}}=\sqrt{\frac{1}{4}£¨{16-4}£©}=\sqrt{3}$£®
¹ÊÑ¡A£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÀà±ÈÍÆÀíµÄÓ¦Óã¬ÒªÇóÕýÈ·Àí½âÀà±ÈµÄ¹ØÏµ£¬±È½Ï»ù´¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®º¯Êý$f£¨x£©=Asin£¨¦Øx+ϕ£©£¨A£¾0£¬¦Ø£¾0£¬|ϕ|£¼\frac{¦Ð}{2}£©$µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©

| A£® | $f£¨x£©=sin£¨x+\frac{¦Ð}{6}£©$ | B£® | $f£¨x£©=sin£¨x+\frac{¦Ð}{3}£©$ | C£® | $f£¨x£©=sin£¨2x+\frac{¦Ð}{6}£©$ | D£® | $f£¨x£©=sin£¨2x+\frac{¦Ð}{3}£©$ |
7£®¼ºÖª${a^{\frac{2}{3}}}=\frac{4}{9}£¨a£¾0£©$£¬Ôò${log_a}\frac{3}{2}$=£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | $-\frac{1}{3}$ | C£® | -3 | D£® | 3 |
14£®ÏÂÁк¯ÊýÖУ¬Ó뺯Êý$f£¨x£©=\frac{1}{{\root{3}{x}}}$µÄ¶¨ÒåÓòÏàͬµÄº¯ÊýÊÇ£¨¡¡¡¡£©
| A£® | y£¨x£©=x•ex | B£® | $y=\frac{sinx}{x}$ | C£® | $y=\frac{x}{sinx}$ | D£® | $y=\frac{lnx}{x}$ |
4£®
Èçͼ¶¯Ö±Ïßl£ºy=bÓëÅ×ÎïÏßy2=4x½»ÓÚµãA£¬ÓëÍÖÔ²$\frac{x^2}{2}+{y^2}=1$½»ÓÚÅ×ÎïÏßÓÒ²àµÄµãB£¬FΪÅ×ÎïÏߵĽ¹µã£¬ÔòAF+BF+ABµÄ×î´óֵΪ£¨¡¡¡¡£©
| A£® | 3 | B£® | $3\sqrt{2}$ | C£® | 2 | D£® | $2\sqrt{2}$ |