题目内容
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组
,第二组
,
,第五组
.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.
![]()
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知
求事件“
”发生的概率.
【答案】(1)29人;(2)
.
【解析】
(1)根据频率分布直方图,良好即第二三两组,计算出第二三两组的频率即可算出人数;
(2)结合频率分布直方图,计算出
两组的人数,
即两位同学来自不同的两组,利用古典概型求解概率即可.
(1)由直方图知,成绩在
内的人数为:
(人),
所以该班成绩良好的人数为29人;
(2)由直方图知,成绩在
的人数为
人;
成绩在
的人数为
人;.
事件“
”发生即这两位同学来自不同的两组,
此题相当于从这五人中任取2人,求这两人来自不同组的概率
其概率为
.
![]()
【题目】从一批草莓中,随机抽取
个,其重量(单位:克)的频率分布表如下:
分组(重量) |
|
|
|
|
频数(个) |
|
|
|
|
已知从
个草莓中随机抽取一个,抽到重量在
的草莓的概率为
.
(1)求出
,
的值;
(2)用分层抽样的方法从重量在
和
的草莓中共抽取
个,再从这
个草莓中任取
个,求重量在
和
中各有
个的概率.
【题目】现代社会对破译密码的难度要求越来越高.有一种密码把英文的明文(真实文)按字母分解,其中英文的a,b,…,z这26个字母(不论大小写)依次对应1,2,…,26这26个自然表,见表
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
给出如下一个变换公式:
利用它可将明文转换成密文,如
,即h变成q;
,即e变成c,按上述公式,若将某明文译成的密文是shxc,那么,原来的明文是( ).
A. lhho B. ohhl C. love D. eovl