题目内容
设函数
,
.
(Ⅰ)当
时,
取得极值,求
的值;
(Ⅱ)若
在
内为增函数,求
的取值范围.
(Ⅰ)当
(Ⅱ)若
(Ⅰ)
(Ⅱ)
本试题主要是考查导数的几何意义的运用以及导数求解函数的单调区间的极值的综合运用。
(1)由题意:
解得
.
(2)方程
的判别式
,根据判别式符号来证明得到。
解:
,
(Ⅰ)由题意:
解得
. ………………3分
(Ⅱ)方程
的判别式
,
(1) 当
, 即
时,
,
在
内恒成立, 此时
为增函数; ------ 6分
(2) 当
, 即
或
时,
要使
在
内为增函数, 只需在
内有
即可, 设
,
由
得
, 所以
.
由(1) (2)可知,若
在
内为增函数,
的取值范围是
.---12分
(1)由题意:
解得
(2)方程
解:
(Ⅰ)由题意:
解得
(Ⅱ)方程
(1) 当
(2) 当
要使
由
由(1) (2)可知,若
练习册系列答案
相关题目