题目内容
已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.求数列{an}与{bn}的通项公式.
解:∵当n≥2时,an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,
当n=1时,a1=S1=4也适合,
∴{an}的通项公式是an=4n(n∈N*).
∵Tn=2-bn,∴当n=1时,b1=2-b1,b1=1.
当n≥2时,bn=Tn-Tn-1=(2-bn)-(2-bn-1),
∴2bn=bn-1,
∴数列{bn}是公比为
,首项为1的等比数列.
∴bn=
n-1.
练习册系列答案
相关题目
有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:
| 编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
| 直径 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
其中直径在区间[1.48,1.52]内的零件为一等品.
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率.