题目内容
【题目】如图,点
,
,
,
分别为椭圆
:
的左、右顶点,下顶点和右焦点,直线
过点
,与椭圆
交于点
,
已知当直线
轴时,
.
(1)求椭圆
的离心率;
(2)若当点
与
重合时,点
到椭圆
的右准线的距离为上.
①求椭圆
的方程;
②求
面积的最大值.
![]()
【答案】(1)
(2)①
②![]()
【解析】分析:(1)先求当直线
轴时,
,再根据条件得
,最后由
解得离心率,(2)设直线
为
,
,
,
,联立直线方程与椭圆方程,利用韦达定理化简
,即得![]()
,令
,利用基本不等式求最值,最后考虑特殊情形下三角形面积的值.
详解:解:(1)在
中,令![]()
可得
,所以![]()
所以当直线
轴时,![]()
又
,所以![]()
所以
,所以![]()
(2)① 因为
,所以
,![]()
椭圆方程为![]()
当点
与点
重合时,
点坐标为![]()
又
,所以此时直线
为![]()
由
得![]()
又
,所以![]()
所以椭圆方程为![]()
② 设直线
为![]()
由
得![]()
即
,
恒成立
设
,![]()
则
,
![]()
所以![]()
![]()
![]()
![]()
令
,则
且![]()
,![]()
易知函数
在
上单调递增
所以当
时,![]()
即
的面积的最大值为![]()
练习册系列答案
相关题目
【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据
,如表所示:
单价 |
|
|
|
|
|
|
销量 |
|
|
|
|
|
|
已知
.
(1)若变量
具有线性相关关系,求产品销量
(百件)关于试销单价
(千元)的线性回归方程
;
(2)用(1)中所求的线性回归方程得到与
对应的产品销量的估计值
.
(参考公式:线性回归方程中
的估计值分别为
)