题目内容
设f(n)=
+
+
+…+
(n∈N*),那么f(n+1)-f(n)等于( )
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:根据题中所给式子,求出f(n+1)和f(n),再两者相减,即得到f(n+1)-f(n)的结果.
解答:解:根据题中所给式子,得f(n+1)-f(n)
=
+
++
+
+
-(
+
++
)
=
+
-
=
-
,
故答案选D.
=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
故答案选D.
点评:此题主要考查数列递推式的求解.
练习册系列答案
相关题目