题目内容
设f(n)=
+
+
+…+
(n∈N*),那么f(n+1)-f(n)=
+
+…+
+
+
-(
+
+…+
)=
+
-
=
-
-
.
| 1 |
| n+1 |
| 2 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
分析:有已知中f(n)=
+
+
+…+
(n∈N*),利用代入法可得f(n+1)=
+
+…+
+
+
,进而构造f(n+1)-f(n)的表达式,进而得到答案.
| 1 |
| n+1 |
| 2 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
解答:解:∵f(n)=
+
+
+…+
(n∈N*),、
∴f(n+1)=
+
+…+
+
+
∴f(n+1)-f(n)=
+
+…+
+
+
-(
+
+…+
)
=
+
-
=
-
故答案为:
-
| 1 |
| n+1 |
| 2 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
∴f(n+1)=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
∴f(n+1)-f(n)=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
故答案为:
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
点评:本题考查的知识点是函数的解析式的求法,其中根据已知条件,构造出f(n+1)-f(n)的表达式,是解答本题的关键.
练习册系列答案
相关题目
设f(n)=
+
+
+…+
(n∈N*),那么f(n+1)-f(n)等于( )
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|