题目内容
设f(n)=
+
+
+…+
(n∈N*),那么f(n+1)-f(n)=
+
+…+
+
+
-(
+
+…+
)=
+
-
=______.
| 1 |
| n+1 |
| 2 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
∵f(n)=
+
+
+…+
(n∈N*),、
∴f(n+1)=
+
+…+
+
+
∴f(n+1)-f(n)=
+
+…+
+
+
-(
+
+…+
)
=
+
-
=
-
故答案为:
-
| 1 |
| n+1 |
| 2 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
∴f(n+1)=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
∴f(n+1)-f(n)=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+1 |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
故答案为:
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
练习册系列答案
相关题目
设f(n)=
+
+
+…+
(n∈N*),那么f(n+1)-f(n)等于( )
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|