题目内容

设f(n)=
1
n+1
+
2
n+2
+
1
n+3
+…+
1
2n
(n∈N*)
,那么f(n+1)-f(n)=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2
-(
1
n+1
+
1
n+2
+…+
1
2n
)
=
1
2n+1
+
1
2n+2
-
1
n+1
=______.
∵f(n)=
1
n+1
+
2
n+2
+
1
n+3
+…+
1
2n
(n∈N*)
,、
∴f(n+1)=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2

∴f(n+1)-f(n)=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2
-(
1
n+1
+
1
n+2
+…+
1
2n
)

=
1
2n+1
+
1
2n+2
-
1
n+1

=
1
2n+1
-
1
2n+2

故答案为:
1
2n+1
-
1
2n+2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网