题目内容
已知:正数数列an中,若关于x的方程x2-| an+1 |
| 3an+2 |
| 4 |
(1)若a1=1,求a2,a3的值;并证明
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
| 3 |
| 4 |
(2)若a1=a,bn=an-(3n-12)•2n,求使bn+1≥bn对一切n∈N+都成立的a的取值范围.
分析:(1)由△=an+1-4×
=0得an+1=3an+2,再由an+1=3an+2得an+1+1=3(a1+1),由此能够证明
+
+…+
<
.
(2)当a1=a时,an+1=(a+1)•3n-1,bn=(a+1)•3n-1-1-(3n-12)•2n,bn+1-bn=(a+1)•2•3n-1-(3n-6)•2n≥0对一切n∈N+都成立,由此能求出使bn+1≥bn对一切n∈N+都成立的a的取值范围.
| 3an+2 |
| 4 |
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
| 3 |
| 4 |
(2)当a1=a时,an+1=(a+1)•3n-1,bn=(a+1)•3n-1-1-(3n-12)•2n,bn+1-bn=(a+1)•2•3n-1-(3n-6)•2n≥0对一切n∈N+都成立,由此能求出使bn+1≥bn对一切n∈N+都成立的a的取值范围.
解答:解:(1)由△=an+1-4×
=0得an+1=3an+2∴a_=5,a3=17(2分)
由an+1=3an+2得an+1+1=3(a1+1),
所以an+1为首项为2公比为3的等比数列
得an+1=2•3n-1(5分),
+
+
=
[1+
++
]=
-
•(
)n<
(8分)
(2)当a1=a时,an+1=(a+1)•3n-1,bn=(a+1)•3n-1-1-(3n-12)•2n
bn+1-bn=(a+1)•2•3n-1-(3n-6)•2n≥0对一切n∈N+都成立,所以a+1≥(
)n-1•(3n-6)
令cn=(
)n-1(3n-6),cn+1-cn=(
)n-1(-n+4),
所以(cn)max=c4=c5=
,所以a≥
(16分)
| 3an+2 |
| 4 |
由an+1=3an+2得an+1+1=3(a1+1),
所以an+1为首项为2公比为3的等比数列
得an+1=2•3n-1(5分),
| 1 |
| 1+a1 |
| 1 |
| 1+a2 |
| 1 |
| 1+an |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 3 |
| 3 |
| 4 |
(2)当a1=a时,an+1=(a+1)•3n-1,bn=(a+1)•3n-1-1-(3n-12)•2n
bn+1-bn=(a+1)•2•3n-1-(3n-6)•2n≥0对一切n∈N+都成立,所以a+1≥(
| 2 |
| 3 |
令cn=(
| 2 |
| 3 |
| 2 |
| 3 |
所以(cn)max=c4=c5=
| 16 |
| 9 |
| 7 |
| 9 |
点评:本题考查数列的性质和综合运用,解题时要注意公式的合理运用.
练习册系列答案
相关题目