题目内容
点到点及到直线的距离都相等,如果这样的点恰好只有一个,那么
的值是( )
A、 B、 C、或 D、或
二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.则四维空间中“超球”的三维测度,猜想其四维测度W= .
在中满足条件.
(Ⅰ)求;
(Ⅱ)若,求三角形面积的最大值.
已知是奇函数(其中).
(1)求的值;
(2)判断在上的单调性并证明;
(3)当时,的取值范围恰为,求与的值.
如果实数x、y满足关系,则的取值范围是( )
A.[3,4] B.[2,3] C. D.
已知双曲线,过其右焦点的直线交双曲线于两点,的垂直平分线交轴
于点,则的值为( )
A. B. C. D.
已知点是以为焦点的双曲线上一点,,则双曲线的离心率为( )
A. B.2 C. D.
如图是在一次全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶图,去掉一个
最高分和一个最低分后,所剩数据的平均数和方差分别为( )
A.84,4.84 B.84,1.6 C.85,1.6 D.85,4
设是定义在R上的奇函数,且,则 .