题目内容
抛物线y2=x上到直线x-2y+4=0的距离最小的点是( )
A.(
| B.(
| C.(1,1) | D.(4,2) |
设点P(y2,y)是抛物线y2=x上的任意一点,
则点P到直线到直线x-2y+4=0的距离d=
=
≥
=
,当且仅当y=1,及取点P(1,1)时,取等号.
故选C.
则点P到直线到直线x-2y+4=0的距离d=
| |y2-2y+4| | ||
|
| |(y-1)2+3| | ||
|
| 3 | ||
|
3
| ||
| 5 |
故选C.
练习册系列答案
相关题目