题目内容
【题目】某地区进行疾病普查,为此要检验每一人的血液,如果当地有
人,若逐个检验就需要检验
次,为了减少检验的工作量,我们把受检验者分组,假设每组有
个人,把这个
个人的血液混合在一起检验,若检验结果为阴性,这
个人的血液全为阴性,因而这
个人只要检验一次就够了,如果为阳性,为了明确这个
个人中究竟是哪几个人为阳性,就要对这
个人再逐个进行检验,这时
个人的检验次数为
次.假设在接受检验的人群中,每个人的检验结果是阳性还是阴性是独立的,且每个人是阳性结果的概率为
.
(Ⅰ)为熟悉检验流程,先对3个人进行逐个检验,若
,求3人中恰好有1人检测结果为阳性的概率;
(Ⅱ)设
为
个人一组混合检验时每个人的血需要检验的次数.
①当
,
时,求
的分布列;
②是运用统计概率的相关知识,求当
和
满足什么关系时,用分组的办法能减少检验次数.
【答案】(Ⅰ)
; (Ⅱ)①见解析,②当
时,用分组的办法能减少检验次数.
【解析】
(Ⅰ)根据独立重复试验概率公式得结果;(Ⅱ)①先确定随机变量,再分别计算对应概率,列表可得分布列,②先求数学期望,再根据条件列不等式,解得结果.
(Ⅰ)对3人进行检验,且检验结果是独立的,
设事件
:3人中恰有1人检测结果为阳性,则其概率
(Ⅱ)①当
,
时,则5人一组混合检验结果为阴性的概率为
,每人所检验的次数为
次,若混合检验结果为阳性,则其概率为
,则每人所检验的次数为
次,故
的分布列为
|
|
|
|
|
|
②分组时,每人检验次数的期望如下
![]()
![]()
∴![]()
不分组时,每人检验次数为1次,要使分组办法能减少检验次数,需
即 ![]()
所以当
时,用分组的办法能减少检验次数.
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取
名学生的成绩进行统计分析,结果如下表:(记成绩不低于
分者为“成绩优秀”)
分数 |
|
|
|
|
|
|
|
甲班频数 |
|
|
|
|
|
|
|
乙班频数 |
|
|
|
|
|
|
|
(1)由以上统计数据填写下面的
列联表,并判断是否有
以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(2)在上述样本中,学校从成绩为
的学生中随机抽取
人进行学习交流,求这
人来自同一个班级的概率.
参考公式:
,其中
.
临界值表
|
|
|
|
|
|
|
|
|
|