题目内容
已知tan(α+
)=-3,α∈(0,
).
(1)求tanα的值;
(2)求sin(2α-
)的值.
| π |
| 4 |
| π |
| 2 |
(1)求tanα的值;
(2)求sin(2α-
| π |
| 3 |
(1)由tan(α+
)=-3可得
=-3.
解得tanα=2.
(2)由tanα=2,α∈(0,
),可得sinα=
,cosα=
.
因此sin2α=2sinαcosα=
,cos2α=1-2sin2α=-
,
则sin(2α-
)=sin2αcos
-cos2αsin
=
×
+
×
=
.
| π |
| 4 |
| tanα+1 |
| 1-tanα |
解得tanα=2.
(2)由tanα=2,α∈(0,
| π |
| 2 |
2
| ||
| 5 |
| ||
| 5 |
因此sin2α=2sinαcosα=
| 4 |
| 5 |
| 3 |
| 5 |
则sin(2α-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 4 |
| 5 |
| 1 |
| 2 |
| 3 |
| 5 |
| ||
| 2 |
4+3
| ||
| 10 |
练习册系列答案
相关题目