题目内容
某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
| 组数 | 分组 | 低碳族 的人数 | 占本组 的频率 |
| 1 | [25,30) | 120 | 0.6 |
| 2 | [30,35) | 195 | P |
| 3 | [35,40) | 100 | 0.5 |
| 4 | [40,45) | a | 0.4 |
| 5 | [45,50) | 30 | 0.3 |
| 6 | [50,55) | 15 | 0.3 |
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.
解:(Ⅰ)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为
.
频率直方图如下:

第一组的人数为
,频率为0.04×5=0.2,所以
.
由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以
.
第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.
(Ⅱ)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.
随机变量X服从超几何分布.
,
,
,
.
所以随机变量X的分布列为
∴数学期望
.
分析:(I)由题意及统计图表,利用图表性质得第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,在有频率定义知高为
,在有频率分布直方图会全图形即可;
(II)由题意及(I)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,并且由题意分出随机变量X服从超几何分布,利用分布列定义可以求出分布列,并利用分布列求出期望.
点评:此题考查了频率分布直方图及其性质,还考查了统计中的分层抽样及离散型随机变量的定义及分布列,并考查了应用其分布列求其期望,重在考查学生的理解及计算能力.
频率直方图如下:
第一组的人数为
由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以
第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.
(Ⅱ)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.
随机变量X服从超几何分布.
所以随机变量X的分布列为
| X | 0 | 1 | 2 | 3 |
| P |
分析:(I)由题意及统计图表,利用图表性质得第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,在有频率定义知高为
(II)由题意及(I)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,并且由题意分出随机变量X服从超几何分布,利用分布列定义可以求出分布列,并利用分布列求出期望.
点评:此题考查了频率分布直方图及其性质,还考查了统计中的分层抽样及离散型随机变量的定义及分布列,并考查了应用其分布列求其期望,重在考查学生的理解及计算能力.
练习册系列答案
相关题目