题目内容
已知{an}是公比大于1的等比数列,它的前3项和S3=7,且a1+3、3a2、a3+4构成等差数列.
(I)求数列{an}的通项公式;
(II)令bn=
,数列{bn}的前n项是Tn,若对于任意正整数n,都有Tn<m(m∈Z)成立,求m的最小值.
(I)求数列{an}的通项公式;
(II)令bn=
| 5 |
| (log2a2n)•(log2a2(n+1)) |
(I)由已知得:
,解得a2=2,
设数列{an}的公比为q,由a2=2,可得a1=
,a3=2q,
又S3=7,可知2q2-5q+2=0,解得q1=2,q2=
,
由题意得q>1,∴q=2.∴a1=1,故数列{an}的通项为an=2n-1;
(II)由于bn=
=
=
(
-
),Tn=
(
-
)+
(
-
)+…+
(
-
)=
,
∵
=
=
-
<
,
∴使Tn<m成立的整数m的最小值是3.
|
设数列{an}的公比为q,由a2=2,可得a1=
| 2 |
| q |
又S3=7,可知2q2-5q+2=0,解得q1=2,q2=
| 1 |
| 2 |
由题意得q>1,∴q=2.∴a1=1,故数列{an}的通项为an=2n-1;
(II)由于bn=
| 5 |
| (log222n-1)(log222n+1) |
| 5 |
| (2n-1)(2n+1) |
| 5 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 5 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 5 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 5 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 5n |
| 2n+1 |
∵
| 5n |
| 2n+1 |
n+
| ||||
| 2n+1 |
| 5 |
| 2 |
| 5 |
| 4n+2 |
| 5 |
| 2 |
∴使Tn<m成立的整数m的最小值是3.
练习册系列答案
相关题目