题目内容

已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为
4
5
3
2
5
3
,过P作长轴的垂线恰好过椭圆的右焦点,求椭圆方程.
分析:先假设出椭圆的标准形式,再由P到两焦点的距离得到2a=
4
5
3
+
2
5
3
,得到a的值,结合过P且与长轴垂直的直线恰过椭圆的一个焦点,可求得c的值,进而可求得椭圆的方程.
解答:解:设所求的椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)或
y2
a2
+
x2
b2
=1(a>b>0),
由已知条件得
2a=
4
5
3
+
2
5
3
(2c)2=(
4
5
3
)
2
-(
2
5
3
)
2

a=
5
,c=
15
3
,b2=
10
3

所求椭圆方程为
x2
5
+
y2
10
3
=1
y2
5
+
x2
10
3
=1
点评:本题主要考查椭圆的基本性质的运用.椭圆的基本性质是高考的重点内容,一定要熟练掌握并能够灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网