题目内容

4.椭圆$\frac{{x}^{2}}{4}$+y2=1的左、右焦点分别为F1、F2,过F1的直线l交椭圆于A、B两点,则△ABF2的周长为(  )
A.4B.8C.12D.16

分析 求得椭圆的a=2,再由椭圆的定义可得△AF1B的周长为c=4a=8.

解答 解:椭圆 $\frac{x^2}{16}$+$\frac{y^2}{9}$=1的a=4,
由椭圆的定义可得,
△AF2B的周长为c=|AB|+|AF2|+|BF2|
=(|AF2|+|AF1|)+(|BF1|+|BF2|)
=2a+2a=4a=8.
故选B.

点评 本题考查椭圆的定义、方程和性质,主要考查椭圆的定义的运用,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网