题目内容
已知函数f(x)满足如下条件:当x∈(-1,1]时,f(x)=ln(x+1),且对任意x∈R,都有f(x+2)=2f(x)+1.
(1)求函数f(x)的图象在点(0,f(0))处的切线方程;
(2)求当x∈(2k-1,2k+1],k∈N+时,函数f(x)的解析式.
(1)x∈(-1,1]时,f(x)=ln(x+1),f′(x)=
,
所以,函数f(x)的图象在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),即y=x.
(2)因为f(x+2)=2f(x)+1,所以,当x∈(2k-1,2k+1],k∈N*时,x-2k∈
(-1,1],
f(x)=2f(x-2)+1
=22f(x-4)+2+1
=23f(x-6)+22+2+1
=…
=2kf(x-2k)+2k-1+2k-2+…+2+1
=2kln(x-2k+1)+2k-1.
练习册系列答案
相关题目