题目内容
如图,四棱柱中,底面ABCD是矩形,且,,,若O为AD的中点,且.
(1)求证:平面ABCD;
(2)线段BC上是否存在一点P,使得二面角为?若存在,求出BP的长;不存在,说明理由.
已知函数的图像如图所示,则 .
设是虚数单位,复数,则=( )
A.1 B. C. D.2
下列函数中既是奇函数,又在区间内是增函数的为( )
A.,
B.,,且
C.,
D.,
(本小题满分12分)如图,内接于圆O,AB是圆O的直径,,,,四边形DCBE为平行四边形,平面ABC.
(1)证明:平面平面ADE;
(2)在CD上是否存在一点M,使得平面ADE?证明你的结论.
已知实数a,b,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要
已知函数,其中.
(1)判断并证明函数的奇偶性;
(2)判断并证明函数的单调性.
设23-2x<0.53x-4,则x的取值范围是________.
甲箱子里装有3个白球个黑球,乙箱子里装有个白球,2个黑球,在一次试验中,分别从这两个箱子里摸出一个球,若它们都是白球,则获奖
(1) 当获奖概率最大时,求的值;
(2)在(1)的条件下,班长用上述摸奖方法决定参加游戏的人数,班长有4次摸奖机会(有放回摸取),当班长中奖时已试验次数即为参加游戏人数,如4次均未中奖,则,求的分布列和.