题目内容
已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论不正确的是( )

| A.CD∥平面PAF | B.DF⊥平面PAF | C.CF∥平面PAB | D.CF⊥平面PAD |
∵六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.
则AF∥CD,由线面平行的判定定理,可得CD∥平面PAF,故A正确;
DF⊥AF,DF⊥PA,由线面垂直的判定定理可得DF⊥平面PAF,故B正确;
CF∥AB,由线面平行的判定定理,可得CF∥平面PAB,故C正确;
CF与AD不垂直,故D中,CF⊥平面PAD不正确;
故选D
则AF∥CD,由线面平行的判定定理,可得CD∥平面PAF,故A正确;
DF⊥AF,DF⊥PA,由线面垂直的判定定理可得DF⊥平面PAF,故B正确;
CF∥AB,由线面平行的判定定理,可得CF∥平面PAB,故C正确;
CF与AD不垂直,故D中,CF⊥平面PAD不正确;
故选D
练习册系列答案
相关题目