题目内容
已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,记y=f(x).(Ⅰ)求f(x)的表达式;
(Ⅱ)定义正数数列{an},a1=
| 1 |
| 2 |
| a | 2 n+1 |
| 1 | ||
|
(Ⅲ)令bn=
| 1 | ||
|
| 31 |
| 8 |
分析:(Ⅰ)由sin(2α+β)=3sinβ,知sin2αcosβ+cos2αsinβ=3sinβsin2αcosβ=sinβ(3-cos2α),tanβ=
=
=
=
,由此能求出f(x)的表达式.
(Ⅱ)由
=2anf(n)=2an•
=
,知
=1+
,
-2=
(
-2),故数列{
-2}是等比数列.
(Ⅲ)由bn=
-2na1=
,知Sn=
=4[1-(
)2],由此入手能导出满足Sn>
的最小n为6.
| sin2α |
| 3-cos2α |
| 2sinαcosα |
| 3-2cos2α+1 |
| 2sinαcosα |
| 4sin2α+2cos2α |
| tanα |
| 2tan2α+1 |
(Ⅱ)由
| a | 2 n+1 |
| an | ||
2
|
2
| ||
2
|
| 1 | ||
|
| 1 | ||
2
|
| 1 | ||
|
| 1 |
| 2 |
| 1 | ||
|
| 1 | ||
|
(Ⅲ)由bn=
| 1 | ||
|
| 1 |
| 2 |
2[1-(
| ||
1-
|
| 1 |
| 2 |
| 31 |
| 8 |
解答:解:(Ⅰ)∵sin(2α+β)=3sinβ,
∴sin2αcosβ+cos2αsinβ=3sinβsin2αcosβ=sinβ(3-cos2α)
tanβ=
=
=
=
∴f(x)=
(Ⅱ)∵
=2anf(n)=2an•
=
∴
=1+
∴
-2=
(
-2)
∴数列{
-2}是以2为首项,
为公比的等比数列.
(Ⅲ)∵bn=
-2na1=
∴Sn=
=4[1-(
)2]
又Sn>
即4[1-(
)n]>
∴(
)n<
∴n>5
∴满足Sn>
的最小n为6.
∴sin2αcosβ+cos2αsinβ=3sinβsin2αcosβ=sinβ(3-cos2α)
tanβ=
| sin2α |
| 3-cos2α |
| 2sinαcosα |
| 3-2cos2α+1 |
| 2sinαcosα |
| 4sin2α+2cos2α |
| tanα |
| 2tan2α+1 |
∴f(x)=
| x |
| 2x2+1 |
(Ⅱ)∵
| a | 2 n+1 |
| an | ||
2
|
2
| ||
2
|
∴
| 1 | ||
|
| 1 | ||
2
|
∴
| 1 | ||
|
| 1 |
| 2 |
| 1 | ||
|
∴数列{
| 1 | ||
|
| 1 |
| 2 |
(Ⅲ)∵bn=
| 1 | ||
|
| 1 |
| 2 |
∴Sn=
2[1-(
| ||
1-
|
| 1 |
| 2 |
又Sn>
| 31 |
| 8 |
| 1 |
| 2 |
| 31 |
| 8 |
∴(
| 1 |
| 2 |
| 1 |
| 32 |
∴满足Sn>
| 31 |
| 8 |
点评:本题考查数列的性质和综合运用,解题时要认真审题,注意不等式性质的合理运用.
练习册系列答案
相关题目
已知sinα+cosα=
,则tanα+cotα等于( )
| 2 |
| A、-1 | B、-2 | C、1 | D、2 |