题目内容
【题目】设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有
A.50种 B.49种 C.48种 D.47种
【答案】B
【解析】
试题分析:集合A、B中没有相同的元素,且都不是空集,
从5个元素中选出2个元素,有
=10种选法,小的给A集合,大的给B集合;
从5个元素中选出3个元素,有
=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;
从5个元素中选出4个元素,有
=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;
从5个元素中选出5个元素,有
=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;
总计为10+20+15+4=49种方法
练习册系列答案
相关题目
【题目】在一次篮球定点投篮训练中,规定每人最多投3次.在
处每投进一球得3分;在
处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次. 某同学在
处的投中率
,在
处的投中率为
.该同学选择先在
处投一球,以后都在
处投,且每次投篮都互不影响.用
表示
该同学投篮训练结束后所得的总分,其分布列为:
| 0 | 2 | 3 | 4 | 5 |
| 0.03 |
|
|
|
|
(1)求
的值;
(2)求随机变量
的数学期望
;
(3)试比较该同学选择上述方式投篮得分超过3分与选择都在
处投篮得分超过3分的概率的大小.