题目内容
【题目】如图①,在等腰梯形
中,
分别为
的中点
为
中点,现将四边形
沿
折起,使平面
平面
,得到如图②所示的多面体,在图②中. ![]()
(1)证明:
;
(2)求三棱锥
的体积.
【答案】(Ⅰ)见解析(Ⅱ)![]()
【解析】
(Ⅰ)由已知可得EF⊥AB,EF⊥CD,折叠后,EF⊥DF,EF⊥CF,利用线面垂直的判定得EF⊥平面DCF,从而得到EF⊥MC;(Ⅱ)由已知可得,AE=BE=1,DF=CF=2,又DM=1,得到MF=1=AE,然后证明AM⊥DF,进一步得到BE⊥平面AEFD,再由等积法求三棱锥M﹣ABD的体积.
(Ⅰ)由题意,可知在等腰梯形
中,
,
∵
,
分别为
,
的中点,
∴
,
.
∴折叠后,
,
.
∵
,∴
平面
.
又
平面
,∴
.
(Ⅱ)易知
,
.
∵
,∴
.
又
,∴四边形
为平行四边形.
∴
,故
.
∵平面
平面
,平面
平面
,且
,
∴
平面
.
∴
.
即三棱锥
的体积为
.
练习册系列答案
相关题目
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数
与月份
之间的回归直线方程
;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式:
,
.
参考数据:
.