题目内容

在△ABC中,满足tan
A-B
2
=
a-b
a+b

(1)试判断△ABC的形状;
(2)当a=10,c=10时,求tan
A
2
的值.
分析:(1)根据题设,可推断当a=b和a≠b两种情况.当a=b可推断△ABC为等腰三角形;当a≠b时通过正弦定理及题设,求得cot
A+B
2
的值,进而求出A+B进而推断△ABC的形状.
(2)根据a=c排除△ABC为直角三角形的情况,根据(1)可知a=b,进而推断△ABC为等边三角形,进而求出∠A和tan
A
2
的值.
解答:解:(1)∵tan
A-B
2
=
a-b
a+b

当a=b时,△ABC为等腰三角形
当a≠b时,根据正弦定理
a-b
a+b
=
sinA-sinB
sinA+sinB
=
2cos(
A+B
2
)sin(
A-B
2
)
2sin(
A+B
2
)cos(
A-B
2
)
=tan
A-B
2

∴cot
A+B
2
=1,即
A+B
2
=
π
4
,A+B=
π
2

∴△ABC为以C为直角的直角三角形.
∴△ABC为直角三角形或等腰三角形
(2)a=c=10,排除△ABC为直角三角形,则△ABC为等腰三角形,即a=b,
又a=c=10,所以a=c=b
∠A=60°
tan
A
2
=tan30°=
3
3
点评:本题主要考查和差化积和同角三角函数的基本关系的应用.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网