题目内容
| AD |
| 1 |
| 5 |
| AB |
| 4 |
| 5 |
| AC |
(1)求
|
| ||
|
|
(2)设cosC=
| ||
| 5 |
| CB |
| CA |
| AB |
| AC |
分析:(1)根据
=
+
,利用向量的线性运算,即可求
的值;
(2)先求得∠BAC=
,根据|
-t
|≥|
+
|,两边平方,化简即可求t的取值范围.
| AD |
| 1 |
| 5 |
| AB |
| 4 |
| 5 |
| AC |
|
| ||
|
|
(2)先求得∠BAC=
| π |
| 2 |
| CB |
| CA |
| AB |
| AC |
解答:解:(1)
=
-
=
+
-
=
-
=
,∴
=
.
(2)根据题意:由cosC=
,令AC=5a,BC=5
a,AB=10a,AD=2
a,可得∠BAC=
,
∵|
-t
|≥|
+
|,两边平方得,
2+t2
2-2
•
•t≥
2+
2+2
•
,
∴125a2+25a2t2-2t•25a2≥100a2+25a2,∴t2-2t≥0,
∴t≥2或t≤0.
| CD |
| AD |
| AC |
| 1 |
| 5 |
| AB |
| 4 |
| 5 |
| AC |
| AC |
| 1 |
| 5 |
| AB |
| 1 |
| 5 |
| AC |
| 1 |
| 5 |
| CB |
|
| ||
|
|
| 1 |
| 4 |
(2)根据题意:由cosC=
| ||
| 5 |
| 5 |
| 5 |
| π |
| 2 |
∵|
| CB |
| CA |
| AB |
| AC |
| CB |
| CA |
| CB |
| CA |
| AB |
| AC |
| AB |
| AC |
∴125a2+25a2t2-2t•25a2≥100a2+25a2,∴t2-2t≥0,
∴t≥2或t≤0.
点评:本题考查向量的线性运算,考查向量模的求解,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|