题目内容

已知向量a=(sin4πx-cos4πx,2cosπx),b=(1,sinπx),令f(x)=a·b.

(1)求函数f(x)的最小正周期;

(2)若函数y=f(x+φ)的图象关于原点对称,求满足该条件的φ的最小正值.

(1)解:∵f(x)=a·b=(sin4πx-cos4πx,2cosπx)·(1,sinπx)?

=sin4πx-cos4πx+2cosπxsinπx                                                                 

=(sin2πx-cos2πx)(sin2πx+cos2πx)+sin2πx?

=-cos2πx+sin2πx=2sin(2πx-),                                                                  

f(x)=2sin(2πx-).?

T=1.                                                                                                                   

(2)解法一:∵y=f(x+φ)的图象关于原点对称,x∈R,?

y=f(x+φ)是奇函数.                                                                                       

f(0+φ)=0,即sin(2πφ-)=0,                                                                          ?

∴2πφ-=(k∈Z),解得φ=+.?

φ的最小正值为.                                                                                     ?

解法二:∵y=f(x+φ)的图象关于原点对称,?

∴-y=f(-x+φ),则f(-x+φ)=-f(x+φ).                                                                ?

又∵f(x+φ)=2sin[2π(x+φ)-],?

f(-x+φ)=2sin[2π(-x+φ)-].?

∴2sin[2π(-x+φ)-]=-2sin[2π(x+φ)-].?

整理,得sin(2πφ-)cos2πx=0,                                                                           ?

∴当sin(2πφ-)=0时,sin(2πφ-)cos2πx=0对一切实数都成立.?

∴2πφ-=(k∈Z),解得φ=+.?

φ的最小正值为.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网