题目内容
已知O是锐角△ABC的外接圆圆心,∠A=θ,若
+
=2m
,则m=______.(用θ表示)
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AO |
取AB中点D,则有
=
+
,
代入
+
=2m
得:
+
=2m(
+
),
由
⊥
,得
•
=0,
∴两边同乘
,化简得:
•
+
•
=2m(
+
)•
=m
•
,
即
c2+
bc•cosA=mc2,
由正弦定理
=
=
化简得:
sin2C+
sinBsinCcosA=msin2C,
由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,
∴m=
=
=
=sinA,
又∠A=θ,
则m=sinθ.
故答案为:sinθ

| AO |
| AD |
| DO |
代入
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AO |
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AD |
| DO |
由
| OD |
| AB |
| DO |
| AB |
∴两边同乘
| AB |
| cosB |
| sinC |
| AB |
| AB |
| cosC |
| sinB |
| AC |
| AB |
| AD |
| DO |
| AB |
| AB |
| AB |
即
| cosB |
| sinC |
| cosC |
| sinB |
由正弦定理
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| cosB |
| sinC |
| cosC |
| sinB |
由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,
∴m=
| cosB+cosAcosC |
| sinC |
| -cos(A+C)+cosAcosC |
| sinC |
=
| -cosAcosC+sinAsinC+cosAcosC |
| sinC |
又∠A=θ,
则m=sinθ.
故答案为:sinθ
练习册系列答案
相关题目