题目内容

已知O是锐角△ABC的外接圆圆心,∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m=______.(用θ表示)
取AB中点D,则有
AO
=
AD
+
DO

代入
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
得:
cosB
sinC
AB
+
cosC
sinB
AC
=2m(
AD
+
DO
)

OD
AB
,得
DO
AB
=0,
∴两边同乘
AB
,化简得:
cosB
sinC
AB
AB
+
cosC
sinB
AC
AB
=2m(
AD
+
DO
)•
AB
=m
AB
AB

cosB
sinC
c2+
cosC
sinB
bc•cosA=mc2

由正弦定理
a
sinA
=
b
sinB
=
c
sinC
化简得:
cosB
sinC
sin2C+
cosC
sinB
sinBsinCcosA=msin2
C,
由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,
∴m=
cosB+cosAcosC
sinC
=
-cos(A+C)+cosAcosC
sinC

=
-cosAcosC+sinAsinC+cosAcosC
sinC
=sinA,
又∠A=θ,
则m=sinθ.
故答案为:sinθ

精英家教网
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网