题目内容

抛物线y2=4x的焦点F的坐标为________,点F到双曲线x2-y2=1的渐近线的距离为________.

(1,0)    
分析:先确定抛物线的焦点位置,进而可确定抛物线的焦点坐标,再由题中条件求出双曲线的渐近线方程,再代入点到直线的距离公式即可求出结论.
解答:抛物线y2=4x的焦点在x轴上,且p=2
=1
∴抛物线y2=4x的焦点坐标为(1,0)
由题得:双曲线x2-y2=1的渐近线方程为y=±x
所以F到其渐近线的距离d=
故答案为:(1,0),
点评:本题考查抛物线的性质,考查双曲线的基本性质,解题的关键是定型定位,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网