题目内容
11.记[x]为不超过x的最大整数,若集合S={(x,y)||[x+y]|+|[x-y]|≤1},则集合S所表示的平面区域的面积为( )| A. | $\frac{5}{2}$ | B. | 3 | C. | $\frac{9}{2}$ | D. | 4 |
分析 化简$\left\{\begin{array}{l}{[x+y]=-1}\\{[x-y]=0}\end{array}\right.$或$\left\{\begin{array}{l}{[x+y]=0}\\{-1≤[x-y]≤1}\end{array}\right.$或$\left\{\begin{array}{l}{[x+y]=1}\\{[x-y]=0}\end{array}\right.$,由题意作平面区域,从而求面积.
解答 解:∵|[x+y]|+|[x-y]|≤1,
∴$\left\{\begin{array}{l}{[x+y]=-1}\\{[x-y]=0}\end{array}\right.$或$\left\{\begin{array}{l}{[x+y]=0}\\{-1≤[x-y]≤1}\end{array}\right.$或$\left\{\begin{array}{l}{[x+y]=1}\\{[x-y]=0}\end{array}\right.$,
由题意作平面区域如下,![]()
结合图象可知,
面积为5×$\frac{1}{2}$×1×1=$\frac{5}{2}$,
故选A.
点评 本题考查了线性规划的变形应用及数形结合的思想应用,同时考查了分类讨论的思想应用.
练习册系列答案
相关题目
2.已知函数$f(x)=\left\{\begin{array}{l}{2^{x-1}}-2,x≤1\\-{log_2}(x+1),x>1\end{array}\right.$,且f(a)=-2,则f(a-5)=( )
| A. | $-\frac{7}{4}$ | B. | 6 | C. | -10 | D. | $-\frac{15}{8}$ |