题目内容

数列{an}满足:a1=
3
2
,若点Pn(3an+1,2an)在经过点(3,0)和(0,-2)的直线上,
(1)求数列{an}的通项公式.
(2)若数列an的前n项和为Sn,求数列{
1
S2n+1
}的前n项和Tn
分析:(1)易求直线方程,代入点Pn坐标,可得递推式,可判断{an}为等差数列,从而可求得an
(2)由(1)可求Sn,进而可求S2n+1,利用裂项相消法可求得Tn
解答:解:(1)直线l的方程为:2x-3y-6=0,
∵6an+1-6an-6=0,即an+1-an=1,
∴数列{an}是以
3
2
为首项,公差为1的等差数列,
an=n+
1
2

(2)由(1)知,Sn=
n(n+2)
2

S2n+1=
(2n+1)(2n+3)
2

1
S2n+1
=
2
(2n+1)(2n+3)
=
1
2n+1
-
1
2n+3

Tn=
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n+1
-
1
2n+3
=
1
3
-
1
2n+3
=
2n
3(2n+3)
点评:本题考查等差数列的通项公式、前n项和公式及裂项相消法对数列求和,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网