题目内容
数列{an}满足:a1=
,若点Pn(3an+1,2an)在经过点(3,0)和(0,-2)的直线上,
(1)求数列{an}的通项公式.
(2)若数列an的前n项和为Sn,求数列{
}的前n项和Tn.
| 3 |
| 2 |
(1)求数列{an}的通项公式.
(2)若数列an的前n项和为Sn,求数列{
| 1 |
| S2n+1 |
分析:(1)易求直线方程,代入点Pn坐标,可得递推式,可判断{an}为等差数列,从而可求得an;
(2)由(1)可求Sn,进而可求S2n+1,利用裂项相消法可求得Tn.
(2)由(1)可求Sn,进而可求S2n+1,利用裂项相消法可求得Tn.
解答:解:(1)直线l的方程为:2x-3y-6=0,
∵6an+1-6an-6=0,即an+1-an=1,
∴数列{an}是以
为首项,公差为1的等差数列,
∴an=n+
;
(2)由(1)知,Sn=
,
∴S2n+1=
,
∴
=
=
-
,
∴Tn=
-
+
-
+…+
-
=
-
=
;
∵6an+1-6an-6=0,即an+1-an=1,
∴数列{an}是以
| 3 |
| 2 |
∴an=n+
| 1 |
| 2 |
(2)由(1)知,Sn=
| n(n+2) |
| 2 |
∴S2n+1=
| (2n+1)(2n+3) |
| 2 |
∴
| 1 |
| S2n+1 |
| 2 |
| (2n+1)(2n+3) |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| 2n |
| 3(2n+3) |
点评:本题考查等差数列的通项公式、前n项和公式及裂项相消法对数列求和,属中档题.
练习册系列答案
相关题目