题目内容
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),过点P(-2,-4)的直线l的参数方程为
(t为参数),l与C分别交于M,N.
|
考点:简单曲线的极坐标方程,参数方程化成普通方程
专题:坐标系和参数方程
分析:(1)利用极坐标与普通方程的关系式,可得C为抛物线方程,消去参数t,可得直线l的方程;
(2)由|PM|=|t1|,|MN|=|t1-t2|,|PN|=|t2|成等比数列,可转化为关于a的等量关系求解.
(2)由|PM|=|t1|,|MN|=|t1-t2|,|PN|=|t2|成等比数列,可转化为关于a的等量关系求解.
解答:
解:(Ⅰ)曲线C:ρsin2θ=2acosθ,可得ρ2sin2θ=2aρcosθ,它的直角坐标方程为y2=2ax(a>0);
,消去t,可得x-y-2=0,
直线l的普通方程为x-y-2=0. 4分
(Ⅱ)将直线l的参数方程与C的直角坐标方程联立,得
t2-2(4+a)
t+8(4+a)=0 (*)
△=8a(4+a)>0.
设点M,N分别对应参数t1,t2,恰为上述方程的根.
则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.
由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.
由(*)得t1+t2=2(4+a)
,t1t2=8(4+a)>0,则有
(4+a)2-5(4+a)=0,得a=1,或a=-4.
因为a>0,所以a=1. 10分
|
直线l的普通方程为x-y-2=0. 4分
(Ⅱ)将直线l的参数方程与C的直角坐标方程联立,得
t2-2(4+a)
| 2 |
△=8a(4+a)>0.
设点M,N分别对应参数t1,t2,恰为上述方程的根.
则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.
由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.
由(*)得t1+t2=2(4+a)
| 2 |
(4+a)2-5(4+a)=0,得a=1,或a=-4.
因为a>0,所以a=1. 10分
点评:本题考查参数方程与极坐标的应用,基本知识的考查.
练习册系列答案
相关题目
已知动点M与F(1,0)的距离比它到直线l:x+3=0的距离小2,设M的轨迹为G,正项数列{an}满足a1=2,且(an,
)在曲线G上,则数列{an}的通项公式为( )
| 2an+1 |
| A、an=2n |
| B、an=2n-1 |
| C、an=2n+1 |
| D、an=2-1 |
两条不重合的直线m,n以及两个平面α,β,给出下列命题:
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则m⊥n;
③若m∥n,n∥α,则m∥α;
④若m⊥α,m∥β,则α⊥β;
其中真命题的个数为( )
①若m∥α,n∥α,则m∥n;
②若m∥α,n⊥α,则m⊥n;
③若m∥n,n∥α,则m∥α;
④若m⊥α,m∥β,则α⊥β;
其中真命题的个数为( )
| A、0 | B、1 | C、2 | D、3 |
| A、2 | B、4 | C、128 | D、0 |