题目内容

2.求极限:$\underset{lim}{x→∞}$($\sqrt{{x}^{2}+x+1}$-$\sqrt{{x}^{2}-x-3}$)

分析 化简$\sqrt{{x}^{2}+x+1}$-$\sqrt{{x}^{2}-x-3}$=$\frac{2x+4}{\sqrt{{x}^{2}+x+1}+\sqrt{{x}^{2}-x-3}}$,从而分类讨论解得.

解答 解:$\underset{lim}{x→∞}$($\sqrt{{x}^{2}+x+1}$-$\sqrt{{x}^{2}-x-3}$)
=$\underset{lim}{x→∞}$$\frac{{x}^{2}+x+1-{x}^{2}+x+3}{\sqrt{{x}^{2}+x+1}+\sqrt{{x}^{2}-x-3}}$
=$\underset{lim}{x→∞}$$\frac{2x+4}{\sqrt{{x}^{2}+x+1}+\sqrt{{x}^{2}-x-3}}$
①当x→+∞时,
$\underset{lim}{x→+∞}$$\frac{2x+4}{\sqrt{{x}^{2}+x+1}+\sqrt{{x}^{2}-x-3}}$
=$\underset{lim}{x→+∞}$$\frac{2+\frac{4}{x}}{\sqrt{1+\frac{1}{x}+\frac{1}{{x}^{2}}}+\sqrt{1-\frac{1}{x}-\frac{3}{{x}^{3}}}}$=1,
②当x→-∞时,
$\underset{lim}{x→+∞}$$\frac{2x+4}{\sqrt{{x}^{2}+x+1}+\sqrt{{x}^{2}-x-3}}$
=-$\underset{lim}{x→+∞}$$\frac{2+\frac{4}{x}}{\sqrt{1+\frac{1}{x}+\frac{1}{{x}^{2}}}+\sqrt{1-\frac{1}{x}-\frac{3}{{x}^{3}}}}$=-1.

点评 本题考查了极限的应用及分类讨论的思想应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网