题目内容
8.已知AC、BD为圆x2+y2=4的两条互相垂直的弦,AC与BD相交于点M$(1,\sqrt{2})$,则四边形ABCD面积的最大值为( )| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
分析 设圆心到AC、BD的距离分别为d1、d2,则 d12+d22 =3,代入面积公式S=$\frac{1}{2}$•|AC||BD|,使用基本不等式求出四边形ABCD的面积的最大值.
解答
解:如图,连接OA、OD作OE⊥AC OF⊥BD垂足分别为E、F
∵AC⊥BD
∴四边形OEMF为矩形
已知OA=OC=2,OM=$\sqrt{3}$,
设圆心O到AC、BD的距离分别为d1、d2,
则d12+d22=OM2=3.
四边形ABCD的面积为:S=$\frac{1}{2}$•|AC|(|BM|+|MD|)=$\frac{1}{2}$•|AC||BD|
=2$\sqrt{(4-{{d}_{1}}^{2})(4-{{d}_{2}}^{2})}$≤8-(${{d}_{1}}^{2}+{{d}_{2}}^{2}$)=5,
当且仅当d12 =d22时取等号,
故选:B.
点评 此题考查学生掌握垂径定理及勾股定理的应用,灵活运用两点间的距离公式化简求值,是一道中档题.解答关键是四边形面积可用互相垂直的2条对角线长度之积的一半来计算.
练习册系列答案
相关题目
16.
2012年10月18日全国第二届绿色运动会在池洲隆垦开幕.本次大会的主题是“绿色、低碳、环保”为大力宣传这一主题,主办方将这6个字做成灯笼悬挂在主会场(如图所示),大会结束后,要将这6个灯笼撤下来,每次撤其中一列最下面的一个,则不同的撤法种数为( )
| A. | 36 | B. | 54 | C. | 72 | D. | 90 |
3.设复数z=(1-i)n(其中i为虚数单位,n∈N*).若z∈R,则n的最小值为( )
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
20.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的一条渐近线与抛物线y2=x的一个交点的横坐标为x0,若x0>1,则双曲线C的离心率e的取值范围是( )
| A. | (1,$\frac{\sqrt{6}}{2}$) | B. | ($\sqrt{2}$,+∞) | C. | (1,$\sqrt{2}$) | D. | ($\frac{\sqrt{6}}{2}$,+∞) |
17.设曲线y=(ax-1)ex在点A(x0,y0)处的切线为l1,曲线y=(1-x)e-x在点B(x0,y1)处的切线为l2,若存在x0∈[0,$\frac{3}{2}$],使得l1⊥l2,则实数a的取值范围是( )
| A. | (-∞,1] | B. | ($\frac{1}{2}$,+∞) | C. | (1,$\frac{3}{2}$) | D. | [1,$\frac{3}{2}$] |