题目内容

设数列{an}(  )
A.若
a2n
=4n,n∈N*,则{an}为等比数列
B.若an•an+2=
a2n+1
,n∈N*,则{an}为等比数列
C.若am•an=2m+n,m,n∈N*,则{an}为等比数列
D.若an•an+3=an+1•an+2,n∈N*,则{an}为等比数列
A中,
a2n
=4n,n∈N*
∴an=±2n,例如2,22,-23,-24,25,26,-27,-28,…不是等比数列,故A错误;
B中,若an=0,满足an•an+2=
a2n+1
,n∈N*,但{an}不是等比数列,故B错误;同理也排除D;
对于C,∵am•an=2m+n,m,n∈N*
am•an+1
am•an
=
2m+n+1
2m+n
=2,即
an+1
an
=2,
∴{an}为等比数列,故C正确.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网