题目内容
设f(x)为可导函数,且满足条件
=3,则曲线y=f(x)在点(1,f(1))处的切线的斜率为( )
| lim |
| x→0 |
| f(x+1)-f(1) |
| 2x |
A.
| B.3 | C.6 | D.无法确定 |
∵f(x)为可导函数,且满足条件
=3,
∴y=f(x)在点(1,f(1))处的切线的斜率为f′(1)=
=2
=2×3=6,
故选 C.
| lim |
| x→0 |
| f(x+1)-f(1) |
| 2x |
∴y=f(x)在点(1,f(1))处的切线的斜率为f′(1)=
| lim |
| x→0 |
| f(x+1)-f(1) |
| x |
| lim |
| x→0 |
| f(x+1)-f(1) |
| 2x |
故选 C.
练习册系列答案
相关题目
设f(x)为可导函数,且满足条件
=3,则曲线y=f(x)在点(1,f(1))处的切线的斜率为( )
| lim |
| x→0 |
| f(x+1)-f(1) |
| 2x |
A、
| ||
| B、3 | ||
| C、6 | ||
| D、无法确定 |